What's Happening?

An Introduction to Event Modeling and Correlation

Stephen Rondeau
Institute of Technology
Agenda

- Background
- Recording Events
- Event Operations
- Modeling Events
- Correlating Events
- Commercial Approaches
- Rule Based Correlation: SEC
- Conclusion
Background

- Expect computers and network devices to:
 - Do the functions we desire
 - Have good performance and adequate capacity
 - These criteria constitute the initial baseline
- Things are happening constantly
 - Services running (e.g., firewall, virus scanning, login)
 - User input processing (e.g., keyboard, mouse)
 - User output processing (e.g., screen updates)
 - Network handling (e.g. packet inspection and storage)
 - OS operation (e.g., paging, file management)
- 1000 to 1,000,000+ things per day, depending on:
 - volume of processing/device
 - number of devices in managed network
“Things that happen” are events
 - Come from OS, IDS, services, applications, database, computer/network hardware monitors, user activity
 - Often indicate change of state
 - A message describing event may be recorded
 - Vary in importance from informational to critical

Normal events are expected

Abnormal events are unexpected
 - Includes missing events
Events Examples

- **Linux Syslog**

 Feb 12 04:19:34 consensus ntpd[1921]: time reset +0.808076 s
 Feb 12 04:26:01 consensus ntpd[1921]: synchronized to 140.142.1.8, stratum 2
 Feb 12 13:12:09 consensus syslogd 1.4.1: restart.
 Feb 12 13:12:09 consensus kernel: klogd 1.4.1, log source = /proc/kmsg started.
 Feb 12 13:12:09 consensus kernel: Linux version 2.6.17-1.2187_FC5smp (brewbuilder@hs20-bc2-2.build.redhat.com) (gcc version 4.1.1 20060525 (Red Hat 4.1.1-1)) #1 SMP Mon Sep 11 01:32:34 EDT 2006

- **Windows EventLog**

 Event Type: Failure Audit
 Event Source: Security
 Event Category: Account Logon
 Event ID: 680
 Date: 2/14/2007
 Time: 4:26:32 PM
 User: NT AUTHORITY\SYSTEM
 Computer: AUTH1
 Description: Logon attempt by: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0
 Logon account: joe
 Source Workstation: \WWW
 Error Code: 0xC0000064
Recording Events

- Most events not recorded -- why?
 - Default: too many events
 - not enough time/space/people/expertise
 - No built-in mechanism to create event message
 - Mechanism exists, but not enabled

- Log files record event messages
 - Local or remote files

- Log files must be managed
 - May consume all storage
 - Could cause denial of service
 - Excessive information ignored; key events overlooked

- Log files can be processed online (real-time) or offline
Recording Events (cont.)

- Not interested in all event messages
 - Only those that are the source or symptoms of problems
 - Only the first time a problem is reported, not every time
 - Maybe only those that occur a certain number of times, during a certain span of time, or both
 - Maybe only when an event is followed by a related event
 - Maybe only when a particular sequence of events occurs
- But how do you determine what is interesting? Later.
- Unix & Cisco syslogs; Windows EventLogs
- Rotate logs to reduce storage concerns
 - Overwrite oldest when size threshold reached
 - Keep n days, then overwrite oldest
Log File Monitoring vs. Correlation

- Many tools monitor logs for problems
 - LogWatch, LogSurfer, Swatch
 - rule: condition-> action: if event x occurs, then do y
 - x is interesting because it is in a rule
 - x must exist in the log files
 - Often analyzed well after the events have occurred

- Correlation: determine what happened; e.g,
 - Summarize sequence of events or record when number of events exceeds threshold by creating new event
 - Uninteresting events may be removed to reduce volume
 - Analyze logs: uncover patterns that will match events
Correlated Event

Events

A

B

C

D

Y

Correlated Event
Event Operations

- **Filter**: select which events
- **Consolidate**: many events combined into one
- **Aggregate**: store events on some basis
- **Compress**: reduce number of similar events
- **Normalize**: convert to predefined form
- **Enrich**: add information to event
- **Generate**: tool creates new events
- **Correlate**: determine how to relate events
Examples of Detectable Incidents

- virus scanner turned off
- same alerts from Intrusion Detection System (IDS)
- login message with failed password message
- fast-growing disk consumption or network traffic
- many network ports being scanned from same IP
- many logins during off-hours
- multiple accounts failing to login
- system time not synchronized periodically
Modeling Behavior

- What is normal activity? Must represent it
 - Periodic events
 - Sequence of events
 - Combination of events
 - Frequency of events
- Allows detection of missing events
- Allows verification of normal operation
- Disadvantages
 - Initial cost to model is high
 - Must maintain model over time
Modeling Topology

- What does our system look like?
 - What devices are there?
 - What services are there?
 - How do they depend on each other?
- Graph-based representation
- Helps determine source or “root cause” of event
 - e.g., is a service down because a network device failed?
- Often used for mapping networks
Correlating Events

- **Correlate**: assign a meaning to events
 - Pair: associate one event with another
 - Count: similar events occurring in time period
 - Threshold event: exceeds preset amount
 - Frequent event: amount per time period
 - Thread: combine related events
 - Sequence: events occur in order
 - Unordered: events are not related by time
- Deduplicate: suppress subsequent same events
- User-defined
Reason for Event Correlation

- **/var/log/messages**
 Feb 14 19:31:10 gate2 pam_winbind[27607]: request failed: No such user, PAM error was User not known to the underlying authentication module (10), NT error was NT_STATUS_NO_SUCH_USER

 Feb 14 19:31:10 gate2 sshd(pam_unix)[27607]: authentication failure; logname= uid=0 euid=0 tty=sshruser= rhost=c-24-19-144-115.hsd1.wa.comcast.net user=labadmin
 Feb 14 19:31:14 gate2 pam_winbind[27607]: request failed: No such user, PAM error was User not known to the underlying authentication module (10), NT error was NT_STATUS_NO_SUCH_USER
 Feb 14 19:31:18 gate2 pam_winbind[27607]: request failed: No such user, PAM error was User not known to the underlying authentication module (10), NT error was NT_STATUS_NO_SUCH_USER
 Feb 14 19:31:22 gate2 sshd(pam_unix)[27607]: 5 more authentication failures; logname= uid=0 euid=0 tty=sshruser= rhost=c-24-19-144-115.hsd1.wa.comcast.net user=labadmin
 Feb 14 19:31:22 gate2 sshd(pam_unix)[27607]: service(sshd) ignoring max retries; 6 > 3

- **/var/log/secure**
 Feb 14 19:31:13 gate2 sshd[27607]: Failed password for labadmin from ::ffff:24.19.144.115 port 1876 ssh2
 Feb 14 19:31:17 gate2 sshd[27607]: Failed password for labadmin from ::ffff:24.19.144.115 port 1876 ssh2
 Feb 14 19:31:20 gate2 sshd[27607]: Failed password for labadmin from ::ffff:24.19.144.115 port 1876 ssh2
Correlating Events (cont.)

- How to correlate?
 - Formulate rule
 - Express condition-action pairs
 - Seem natural; can be readable and maintainable
 - Build statistical model
 - Related events have statistical similarities in attributes
 - Attributes are key parts of events
 - Use probabilities from prior events to relate current event
 - Develop codebook
 - Encode representative set of attributes or events
 - Closest match of current encoding to saved encodings
 - Build neural net (auto-associative)
 - Create clusters based on similar attributes
 - Clusters of events are correlated; non-clustered are interesting
Commercial Approaches

- According to Gartner (2006):
 - All: accept and process events; alert on critical events; take corrective action where possible
 - Often-employed Technologies
 - Network-centric approach, with auto-discovery
 - Automatic analysis of root cause
 - Help with defining/detecting abnormal events
 - Model and/or rule-based correlation
 - Frontrunners (usually expensive)
 - HP OpenView, IBM Tivoli, CA Unicenter (?), Microsoft Operations Manager
 - Specialized, upcoming or not as popular (some low-cost)
Rule Based Correlation: SEC

- Simple Event Correlator, by Risto Vaarandi
 - Rule-based
 - Can process multiple input streams, static and dynamic
 - Can generate events, and save/refer to state
 - Written in Perl for portability and pattern-matching
 - Handles most event operations and allows scheduling
 - Match single event, match paired events, compress, count with thresholds and frequency
 - Fairly efficient
 - Used widely for IDS, fault detection, etc.
 - Free, with several good documents on how to use
 - From author and contributors
Reason for Event Correlation

- /root/rules/login_failed.cfg

 # Sample input:
 # /var/log/messages
 # Feb 14 19:31:10 gate2 sshd(pam_unix)[27607]: authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
 # rhost=c-24-19-144-115.hsd1.wa.comcast.net user=labadmin
 # /var/log/secure
 # Feb 14 19:31:13 gate2 sshd[27607]: Failed password for labadmin from ::ffff:24.19.144.115 port 1876 ssh2

 type=Pair
 ptype=RegExp
 pattern=\[(\d+)\]: authentication failure;.+? rhost=(\S+)\s+user=(\S+)
 desc=authentication failure pid $1, user $3 from host $2
 action=write - authentication failure, but no failed password for $3 from host $2

 ptype2=RegExp
 pattern2=\[(\d+)\]: Failed password for \S+
 desc2=Failed password for $2
 action2=write - Failed password for $2
 window=30

- perl /usr/local/sbin/sec --conf=/root/rules/login_failed.cfg --input=/var/log/messages --input=/var/log/secure
Future Directions

- Already areas of research, but expect more investigation of and improvements in:
 - automatic detection of rules/patterns
 - integration and use of databases
 - integration of modeling and analysis
 - mining of event data
 - performance improvements
 - standardization of events
Conclusion

- Events are a necessary part of computing
- Handling events is labor-intensive and error-prone
- Many tools exist to assist system admins in:
 - filtering large numbers of events
 - determining the root cause of a problem
 - modeling events
 - correlating events
 - minimizing alerts
- By using these tools, you may be able to improve the availability and security of your systems
References

- http://www.loganalysis.com
- Spectrum: (now part of CA)
- Event correlation links:
 - http://wwwwmmteam.informatik.uni-muenchen.de/projects/evcorr/
- Gartner 2006: Event Correlation and Analysis
 - http://mediaproducts.gartner.com/reprints/computerassociates/139655.html
- Auto-association:
- Statistical:
- SEC:
 - http://simple-evcorr.sourceforge.net