Virtual Computing Lab (VCL) And Network Isolation

1 May 2012

What is a VCL?

- Pool of computers
 - Remotely accessible (screen, keyboard, mouse)
 - Reusable
 - Real or virtual
 - Provisionable (ideally)
- NCSU and IBM popularized concept

 Software is being open-sourced
- Applies mainly to CSS/ITS programs

Use in CES program would require more thought

VCL Architecture

- Compute Nodes (cns)
 - Multi-core, multi-GB RAM physical computers that:
 - host VMs ("virtual computers" or VCs) allocated to users, or
 - are allocated to user to install an OS (also a VC)
- Storage Nodes (sns)
 - Simple computers which:
 - provide long-term storage for VMs and disk images
 - are replicated and optimized for moving multi-GB files
- Management Nodes (mns)
 - Computers which:
 - manage the VCL: configuring, provisioning, etc.
 - provide the interface to reservation system

Benefits

- Allows users to have admin privileges
- Provides 24x7 access to computing environment
 - From labs, classrooms, home, conferences, etc.
 - Computer and TCP/IP network are required
- Allows access to software only installable on universityowned equipment
- Provides resources for short-term research/teaching
- Allows for distance learning when labs are required
- Provides network control:
 - Isolate VCs from campus network for security testing
 - Define own network without impacting campus network
 - preconfigured to prevent possible student misconfigurations

Network Isolation

- Physical switch and NICs support VLANs
- Virtual network
 - provided by Virtual Machine Manager (VMM)
 - e.g., <u>VirtualBox</u>
 - allows changing NICs, MAC addresses, promiscuity
 - networking mode: NAT, bridged, host-only, internal
 DHCP service, NAT port forwarding and PXE booting
- <u>Vyatta</u> network appliance for layer 3

 router, firewall, DHCP/NAT/ssh services, etc.
- Future: <u>Open vSwitch</u> for layer 2
 - connect VMs across VCLs
 - isolate projects/classes on same VCL

Current Process

- Faculty or students in senior project (i.e., "requester"):
 - Requests VCs
 - Describes desired operating systems, application(s) and network accessibility
- Institute Lab staff:
 - Prepares the virtual computers and network as desired
 - Notifies requester when request is complete
 - Instructs requester on how to use
- Requester:
 - Uses <u>manage vc app</u> on Windows to:
 - Retrieve specific information for her VC(s)
 - Start VC(s)
 - Connect to VC (which opens display)
 - Use VC as a real computer, logging in, entering commands and information via the keyboard, and possibly moving/clicking mouse
 - Ultimately logs off or indicates that the VC(s) are no longer needed
 - Stop VC(s) if desired
 - Could also use rdesktop on Mac OS X or Linux
 - But it's much more difficult to use

Future Process

- Using web
 - Person reserves computer at a time for a duration
 - Individual or Class
 - Ultimately, also requests what software is installed, etc.
 - Remote computer is prepared or restored by system
 - Person receives IP address and port
- Using remote display software
 - Person connects to remote computer via IP and port
 - Uses remote computer until:
 - Quits session
 - Session duration time expires
 - System saves copy of remote computer

Limitations

- Defined for short-term use to maximize re-use
- Intensity of resource use
 - CPU time: probably okay with multicore CPUs
 - Disk I/O: can be problem unless multiple real disks used
 - Network traffic: could prevent display access
 - VLANs and prioritizing traffic help
 - Dynamic Graphics (video, 3D software, animations, etc.)
 - problem unless special software purchased
- Limited number of available compute nodes
- Transferring VM and disk images between cns and sns
- Users exchanging massive data
 - between local system and VCs
- Users getting copy of disk image or VM

Status

- Hardware (started in 2009)
 - VCL 1: 10 blades (dual quadcore processors per blade)
 - VCL 2: 20 workstations (single quadcore processor)
 - VCL 3: 30 workstations (single quadcore processor)
- Storage cloud (sns) installed
 - configured once before
- Virtual switch under investigation
- Manual provisioning of VCs
- To-do: adopt and adapt Apache VCL
 - partially configured once before
 - reservation system and automatic provisioning